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Abstract: Artificial intelligence (AI) is rapidly becoming an essential tool in the medical field as well 
as in daily life. Recent developments in deep learning, a subfield of AI, have brought remarkable 
advances in image recognition, which facilitates improvement in the early detection of cancer by 
endoscopy, ultrasonography, and computed tomography. In addition, AI-assisted big data analysis 
represents a great step forward for precision medicine. This review provides an overview of AI 
technology, particularly for gastroenterology, hepatology, and pancreatology, to help clinicians uti-
lize AI in the near future. 
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1. Introduction 
Rapid developments in artificial intelligence (AI) technologies bring huge benefits to 

daily life through smartphones (iPhone’s Siri, etc.), wearables (smart watches, etc.), and 
robotic assistants (smart speakers, self-driving cars, etc.) [1,2]. In the medical field, AI also 
holds great promise. Major advances in medical AI have had a tremendous impact at two 
main levels: (1) image recognition and (2) big data analysis. AI can detect very small 
changes that are difficult for humans to perceive. For example, AI can detect lung cancer 
up to a year before a physician [3], and AI can correctly diagnose skin cancer with superior 
diagnostic performance compared to that of a physician [4]. In addition, AI can reach the 
desired output within seconds and with more “consistent” performance. Doctors may 
have “inconsistent” performance due to insufficient training or exhaustion from busy clin-
ical demands. A visual assessment by imaging physicians is qualitative, subjective, and 
prone to errors, and subject to intra-observer and inter-observer variability. AI may have 
better performance than physicians in some cases [5], and it has great promise to reduce 
clinician workload and the cost of medical care. However, it is necessary for clinicians to 
verify the output from AI for patient care. 

In addition to image analysis, big data analysis is suitable for AI to generalize across 
a variety of data types and to provide interpretation across complex variables [6]. There-
fore, AI techniques have been widely applied to big data analyses, such as in genomics, 
novel medicine discoveries, and predictions of disease outcomes [7–9]. For example, IBM 
Watson supports oncologists by providing possible therapeutic options based on infor-
mation from over 300 medical journals, over 200 academic books, and over 15,000,000 
pages of literature related to 11 types of neoplasia [10,11]. In the field of gastroenterology, 
AI has also made remarkable progress, and many international meetings highlight AI-
related sessions. In addition, several new conferences have been established over the past 
few decades, such as the Global GI-AI Summit [12]. Owing to the potential for image 
recognition and big data analysis, not only clinician, but also researchers can benefit from 
the application of AI methodologies. This review focuses on recent AI research in the 
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fields of gastroenterology, hepatology, and pancreatology (summarized in Figure 1) and 
provides an overview of AI technology to help clinicians utilize AI in the near future. 

Figure 1. Summary of AI technologies for gastroenterology, hepatology, and pancreatology. IBS: 
irritable bowel disease, GI: gastrointestinal, GIST: gastrointestinal stromal tumor, IBD: inflamma-
tory bowel disease, EUS: endoscopic ultrasonography, VCE: video capsule endoscopy, NBI: narrow-
band imaging, CT: computed tomography, MRI: magnetic resonance imaging, HCC: hepatocellular 
carcinoma, FNH: focal nodular hyperplasia, IPMN: intraductal papillary mucinous neoplasm, 
NAFLD: nonalcoholic fatty liver disease, PSC: primary sclerosing cholangitis, AIP: autoimmune 
pancreatitis. 

2. Artificial Intelligence 
AI is “a broad discipline with the goal of creating intelligent machines, as opposed to 

the natural intelligence that is demonstrated by humans and animals” (from the state of 
AI report 2020) [1]. In 1950, Alan Turing published a landmark paper describing the cre-
ation of machines that “think” [13]. In 1955, John McCarthy et al. used the word “artificial 
intelligence” for the first time in a proposal for the Dartmouth Conference held in 1956 
[14], which is considered the dawn of AI technology. In 1959, Arthur Samuel developed 
an algorithm for machine learning, a subfield of AI, which referred to a computer’s ability 
to learn from data in order to detect patterns and make decisions without explicitly being 
programmed for the output [15,16]. Before learning algorithms were developed, humans 
alone were required to analyze data and program machines with human-designed algo-
rithms. In contrast, AI can automatically detect patterns and attributes from data and 
make decisions without human input.  

An integral breakthrough in AI technology came in 2012, when deep learning, a new 
type of machine learning, was developed by Geoffrey Hinton et al. [17]. The authors pre-
sented a dramatically improved error rate for visual recognition at a competition confer-
ence, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC), jointly held by 
multiple universities in the United States [18]. Hinton’s team at the University of Toronto 
used deep learning for the first time to improve the error rate by about 10%. The network 
used was a convolutional neural network (CNN) called AlexNet, which has since been 
widely applied for image recognition tasks [19]. Deep learning uses a system called a neu-
ral network, which imitates the neuronal network of the human brain and combines dif-
ferent mathematical models. The input layer and the output layer are not sufficient to 
process complex information (Figure 2A), and more sophisticated analyses can be per-
formed by creating intermediate layers between them. This increase in the number of in-
termediate layers is expressed as deep = deep, and deep learning is a computer processing 
system that has many such intermediate layers (Figure 2B). The layer is composed of a 
filter that extracts features from the original images to determine the characteristics of the 
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original images where higher level features are extracted from lower level ones: for exam-
ple, the first layer extracts patterns at the texture level, the second layer extracts patterns 
at the frame level, the third layer extracts at the shape level, and the last layer indicates a 
list of parts in the original input image. Notably, the filter is automatically created after 
recognition of the features through learning from the input data (see details and examples 
in [18,20–23]. This breakthrough in deep learning was facilitated by advances in graphic 
processing units (GPUs), which were faster than central processing units (CPUs) for real-
time graphics and multitasking [18]. In 2015, AI outperformed humans in the ILSVRC. 
Another example to illustrate the outstanding performance of deep learning was indicated 
by AlphaGo, a deep learning algorithm to win the game “Go” [24]. These attractive devel-
opments in deep learning have greatly contributed to the proliferation of studies, which 
have attempted to automate the interpretation and evaluation of medical images and clin-
ical data, and have expanded the application of AI to various fields. Indeed, over 10,000 
papers in the medical field were published last year (Figure 2C). Based on these recent 
developments in AI technology, the U.S. Food and Drug Administration (FDA) enacted a 
law to approve medical AI devices in December 2016. In April 2018, the first AI device 
was approved to provide screening decisions without the assistance of a clinician’s inter-
pretation for diabetic retinopathy in adults with diabetes [25]. To date, several AI-aided 
devices have been approved by the FDA and the European Union (EU) in the field of 
gastroenterology, hepatology, and pancreatology (Table 1). 

Figure 2. Schematics of neural networks and number of publications of medical AI. (A) A schematic 
of a traditional neural network algorithm. (B) A schematic of a neural network with deep learning 
algorithm. (C) The number of publications involving AI in the medical field. The results of a Pub-
Med search using the following key words (“artificial intelligence” OR “machine learning” OR 
“deep learning” OR “neural network”) AND (medicine OR gastroenterology OR hepatology OR 
pancreatology OR endoscopy OR radiology OR ultrasonography OR “computed tomography” OR 
“clinical imaging“) are shown. 

Table 1. AI-aided devices approved in the fields of gastroenterology. 

Modality Device Name Institution Memo 
Endoscopy EndoBRAIN-EYE Olympus Colon tumor detection; made for endocytoscope 

 EndoBRAIN Olympus Colon tumor diagnosis; made for endocytoscope 
 EndoBRAIN-Plus Olympus Tumor depth diagnosis; made for endocytoscope 
 EndoBRAIN-UC Olympus UC activity diagnosis; made for endocytoscope 
 CAD EYE Fujifilm Colon polyp detection and diagnosis 

 WISE VISION NEC Colon tumor detection 
Connectable to 3 major endoscope manufactures 

 WavSTAT4 PENTAX 1 Colorectal cancer diagnosis 
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 GI Genius Medtronic Colorectal cancer diagnosis 
 Discovery PENTAX 1 AI-assisted colon polyp detector 

CT Liver AI Arterys Liver lesion detection 
US Poseidon Ultrasound BUTTERFLY NETWORK Liver lesion detection 

1 Hoya group. UC: ulcerative colitis, CT: computed tomography, US: ultrasonography. 

3. Pharyngeal Cancer 
Pharyngeal cancer is generally detected by otolaryngologists, and the majority of 

pharyngeal cancer patients are diagnosed at an advanced stage, resulting in a poor disease 
prognosis [26]. Therefore, early detection is critical to improve the survival rate of phar-
yngeal cancer patients. With recent advances in endoscopic technology, such as narrow-
band imaging (NBI) and magnifying endoscopy, not only otolaryngologist, but even gas-
trointestinal endoscopist, are able to detect laryngopharyngeal cancers at an early stage 
[27–29]. A few reports regarding the AI-aided detection of pharyngeal cancers have been 
published by nasopharyngiologists and gastroenterologists [30–33]. Tamashiro et al. 
trained an AI-aided endoscopy system with 5403 images of superficial and advanced 
pharyngeal cancers and validated the system with 1912 images of cancers and non-cancers 
[32] (Figure 3A). The AI system correctly detected all cancers (even those smaller than 10 
mm), and the pictures from NBI provided to the AI resulted in a much higher sensitivity 
(85.6%) than that from white-light endoscopy (70.1%). In actual clinical care situations, 
“real-time” detection is more practical and effective. Kono et al. developed a real-time 
detection system [33,34] that diagnosed 23/25 pharyngeal cancers as cancers (sensitivity: 
92%) and 17/36 non-cancers as non-cancers (specificity: 47%) in a validation study, which 
used video images with a high transaction speed of 0.03 s per image. They theorized that 
the pseudo-positive or negative cases were due to the complex environment of the laryn-
gopharyngeal area, including things such as saliva, bubbles, blurring, and inadequate 
filming conditions. Further improvements in the AI system with a variety of training im-
ages from normal and pharyngeal cancer patients are needed. 

 
Figure 3. Representative images of AI-aided endoscopies and ultrasonography. (A) Pharyngeal can-
cer detected by AI with narrow-band imaging. Adapted from (Tamashiro A, Dig Endosc 2020) [32]. 
(B) Early gastric cancer detected by an AI system. Adapted from (Hirasawa T, Gastric Cancer 2018) 
[35]. (C) Small intestinal bleeding detected by an AI system. Adapted from (Tsuboi A, Dig Endosc 
2020) [36]. (D) A liver mass detected by an AI system. Adapted from (Schmauch B, Diagn Interv 
Imaging 2019) [37]. 

4. Upper Gastrointestinal Diseases 
The overall survival rates for upper gastrointestinal cancers are poor, since many are 

diagnosed at advanced stages [38]. However, if detected early, the five-year survival rates 
exceed 90% [39–41]. For the early detection of neoplasms, endoscopists should pay atten-
tion to very small changes in the mucosa. Unfortunately the detection rates and accuracy 
of endoscopic diagnosis depends largely on the endoscopists’ experience [42]. AI-aided 
detection systems are therefore a hopeful and promising tool in this field. 
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4.1. Esophageal Cancer 
Esophageal cancer is the seventh most common neoplasm and sixth most deadly can-

cer worldwide [43]. Squamous cell carcinoma (SCC) is the most common tumor type of 
all esophageal cancers [43], and several AI systems to detect SCCs have been reported [44–
48]. Recently, Tokai et al. demonstrated that AI using a CNN detected 95.5% (279/291) of 
SCCs in 10 s [44]. They also showed that NBI was more sensitive than white-light imaging, 
which is consistent with previous reports [45]. In addition, they demonstrated that the AI 
correctly estimated the invasion depth with a sensitivity of 84.1% and an accuracy of 
80.9%, which was higher than that of endoscopists. In addition, several reports showed 
that magnified endoscopy enhanced the accuracy of the depth diagnosis [46,47]. Interest-
ingly, the AI performance was the same as that of the experts. In clinical endoscopy prac-
tice, ‘real-time’ diagnosis is required for AI-aided endoscopy. In a multicenter case-control 
study, Luo et al. validated an established AI system, known as GRAIDS, which was 
trained with 1,036,496 endoscopic images, and demonstrated high sensitivity, specificity, 
and accuracy [48]. This is one of the largest studies in the field of AI for medical applica-
tions.  

While the majority of esophageal cancers are SCCs, the incidence of adenocarcinoma 
in the esophagus is increasing rapidly in Europe and North America [49]. Several reports 
have been published for the detection of adenocarcinoma using AI methodologies [50–
58]. An AI system with white-light endoscopy developed by de Groof et al., detected Bar-
rett’s neoplasia with high performance (a sensitivity of 95%, a specificity of 85%, and an 
accuracy of 92%) [50]. Subsequently, they developed an AI algorithm with multi-step 
training and successfully improved the accuracy of AI detection for Barrett’s neoplasia 
over the performance of endoscopists [51]. Recently, Hashimoto et al. used a high-speed 
real-time AI detection algorithm and demonstrated high sensitivity (96.4%), specificity 
(94.2%), and accuracy (95.4%) for the detection of early neoplasia on Barrett’s esophagus 
[52]. A recent meta-analysis by Arribas et al. showed that AI-aided endoscopy can detect 
both types of esophageal neoplasia, SCC and adenocarcinoma, with high sensitivity (ap-
proximately 90%) and accuracy (AUC approximately 0.95) [53], indicating that an AI sys-
tem is a promising tool to avoid missing neoplasia during endoscopy.  

4.2. Gastric Cancer 
Gastric cancer is the fourth most lethal cancer worldwide [43]. As with the other gas-

trointestinal cancers described above, early detection is critical to improve survival rates 
[59]. In 2018, Hirasawa et al. first reported a novel AI-aided (computer-aided) diagnostic 
system for the detection of gastric cancer using a deep learning CNN [35] (Figure 3B). In 
total, 13,584 endoscopic images of gastric cancer as well as non-cancer images were col-
lected to train the AI system. For verification of the diagnostic accuracy, 2296 endoscopic 
images of 69 consecutive cases of gastric cancer (77 lesions) were used. The trained AI 
detected 92.2% of gastric cancer lesions. Using another CNN algorithm, Wu et al. demon-
strated higher performances in the AI group than those of expert endoscopists (accuracy 
92.5% vs. 89.7%, sensitivity 94% vs. 93.9%, specificity 91% vs. 87.3%) [60]. In addition to 
these “still” image detection methodologies, Horiuchi et al. developed an AI to enable 
“real-time” diagnosis using magnifying endoscopy with NBI [61]. The AI system demon-
strated an accuracy of 85.1%, a sensitivity of 87.4%, and a specificity of 82.8%, which was 
significantly more accurate than two experts. More recently, they employed a larger num-
ber of experts (67 endoscopists) to determine whether the performance of the AI detection 
system is better than that of endoscopists [62]. The AI system detected a greater number 
of early gastric cancer cases in a shorter time than the endoscopists with a significantly 
higher sensitivity of 58.4% versus 31.9%, respectively. Although the accuracy of the sys-
tem was slightly lower than that of the experts, and requires further training and adjust-
ments, it presents a promising tool to detect early cancer lesions.  
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Since AI is highly sensitive in image recognition, there can be misdiagnoses. To im-
prove the accuracy of the diagnosis for cancer versus non-cancer, several reports have 
been published. In a study by Hirasawa et al., most of the misdiagnoses by AI were gas-
tritis diagnosed as gastric cancer mainly due to the high sensitivity of the AI [35]. Horiuchi 
et al. established AI-aided magnifying endoscopy using NBI and demonstrated that gas-
tritis could be distinguished from gastric cancer with a correct diagnostic rate of 85.3% 
[63,64]. Another color-enhanced imaging modality, flexible spectral imaging color en-
hancement (FICE) can also be used for the AI-aided detection of gastric cancer. Miyaki et 
al. used a support vector machine, which includes machine learning with training and 
validation images, and found that the system yielded a detection accuracy of 85.9%, a 
sensitivity of 84.8%, and a specificity of 87.0% [65]. Furthermore, for gastritis, the deline-
ation of cancerous regions can be challenging. Kanesaka et al. first reported the introduc-
tion of AI for the diagnosis of gastric cancer [66]. The diagnosis by AI showed relatively 
good results with a sensitivity of 65.5%, a specificity of 80.8%, and a correct diagnostic rate 
of 73.8%. Kubota et al. developed an AI for the diagnosis of the invasion depth using a 
neural network and demonstrated accuracies of 77%, 49%, 51%, and 55% for T1, T2, T3, 
and T4 stages, respectively [67]. Zhu et al. also developed an AI for the diagnosis of the 
invasion depth in gastric cancer. For the diagnosis, which can distinguish a depth of M, 
SM1, SM2, or deeper, for all gastric cancers, including advanced stages, the sensitivity, 
specificity, and accuracy for AI were 76.5%, 95.6%, and 89.1%, respectively, and for en-
doscopists, they were 87.8%, 63.3%, and 71.5%, respectively [68]. Yoon et al. reported an 
AI that could classify early gastric cancer into intramucosal or submucosal cancers, with 
an area under the curve (AUC) of 0.851 [69]. Furthermore, they found that the factor that 
contributed most to the AI prediction of tumor depth was histologic differentiation. Un-
differentiated-type histology corresponded to a lower AI accuracy. 

4.3. Helicobacter pylori Infection and Gastric Atrophy 
Helicobacter pylori infection followed by gastric atrophy is an important cause of gas-

tric cancer [70]. Early diagnosis and management of H. pylori infection and gastric atrophy 
is a key strategy to reduce gastric cancer-related death. However, the diagnosis of H. pylori 
infection based on endoscopic findings remains a subjective process, which greatly de-
pends on the competence of the treating physician, and the accuracy of diagnosis varies 
widely [71]. Shichijo et al. first developed an AI system for the diagnosis of H. pylori-in-
duced gastritis, using 32,208 white-light endoscopic images from 1768 patients both H. 
pylori positive and negative for training [72]. Interestingly, the AI exceeded the perfor-
mance of the endoscopists to diagnose H. pylori infection. In addition, given that the de-
tection of H. pylori infection includes current infection and successful eradication therapy 
(post-eradication), the authors [73] and another group [74] trained an AI system with cases 
that included current infection, no infection, and post-eradication. These studies demon-
strated a similar diagnostic performance compared to that of endoscopists, with a correct 
diagnostic rate of 84.2% for no infection, 82.5% for current infection, and 79.2% for post-
treatment resolution [74]. In a more recent study, Nakahira et al. developed a unique AI 
system to evaluate the risk of gastric cancer [75]. The AI was trained on images of high-
risk (patients with gastric cancer), moderate-risk (patients with current or past H. pylori 
infection or gastric atrophy), or low-risk (patients with no history of H. pylori infection or 
gastric atrophy) patients. The trained system successfully stratified the risk of cancer for 
the low-, moderate-, and high-risk patients, who were diagnosed by the AI as having gas-
tric cancer at 2.2%, 8.8%, and 16.4%, respectively.  

4.4. Upper Gastrointestinal Bleeding 
In addition to image analysis above, AI can be applied to big data analysis to predict 

disease outcomes. For acute upper gastrointestinal bleeding, a systematic review by 
Shung et al., which included 14 studies with 30 assessments of machine learning models, 
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revealed that AI performance was better than validated clinical risk scores to predict mor-
tality from upper gastrointestinal bleeding [76]. Then, the authors published an excellent 
risk scoring system using machine learning models with a greater AUC, higher levels of 
specificity, and a 100% sensitivity compared to the clinical risk scores [77]. 

4.5. Quality Control 
Blind spots potentially exist, even if endoscopists intend to observe the entire stom-

ach, which is a cause of missed gastric cancer [78]. Wu et al. established a real-time quality 
improvement system, named WISENSE (wise + sense), and conducted a randomized con-
trolled trial of 324 patients to confirm the comprehensiveness of the real-time imaging for 
the entire stomach. The study findings indicated that the AI reduced imaging omissions 
by 15% [60,79]. Using a similar AI, Chen et al. conducted a randomized controlled trial 
comparing six groups, including the presence or absence of sedation, normal-diameter or 
small-diameter endoscope, and with or without AI. They reported that normal-diameter 
endoscopy, with AI, and under sedation resulted in significantly fewer omissions [80]. An 
AI system should be able to detect cancer even under less than ideal conditions because 
suboptimal conditions are quite common in daily medical practice, particularly in phar-
yngeal areas. Normal images under such “real life” conditions are needed for AI training. 

5. Gastrointestinal Stromal Tumor (GIST) 
Large GISTs often show various findings on endoscopy and endoscopic ultrasonog-

raphy (EUS), which makes it challenging for clinicians to distinguish GISTs from other 
submucosal tumors (SMTs). Minoda et al. reported the first study to evaluate the ability 
of AI to diagnose SMTs by EUS images. The AI-aided EUS showed a good diagnostic 
capability for large SMTs (≥20 mm) with a sensitivity of 91.7%, a specificity of 83.3%, and 
an accuracy of 90.0%, which were better than those of the EUS experts, (50.0%, 83.3%, and 
53.3%, respectively) [81]. The AUC of the AI-aided EUS for large SMTs was 0.965, which 
was significantly higher than that of the EUS expert readers (0.684). In the future, with the 
help of the AI-aided EUS, non-experts might be able to make a differential diagnosis of 
GIST with the same or higher accuracy than that of EUS experts and without an invasive 
sampling process. 

6. Duodenal and Small Intestinal Lesions 
Duodenal neoplasia is relatively rare and sometimes missed during upper gastroin-

testinal endoscopy. Inoue et al. pretrained an AI system (deep learning CNN) with many 
cases of duodenal neoplasia (65 adenomas, 31 high-grade dysplasias) and showed that the 
system could detect duodenal neoplasia (sensitivity 94.7%), although there were some 
false positives (12.6%) probably due to a peristalsis-related raised fold [82]. The diagnostic 
ability of video capsule endoscopy (VCE) for small intestinal lesions is as high as 63%, 
which is superior to push endoscopy (single or double balloon endoscopy) [83]. VCE pro-
duces large amounts of data (over 50,000 images), which require considerable time for 
manual review by clinicians (30 min–120 min) [84,85]. Time-saving approaches are needed 
[86]. AI is a promising tool for this, and several studies have been performed and summa-
rized previously [87]. Small intestinal bleeds are the most frequent indication for the use 
of VCE. Although commercially available reading systems include blood content en-
hancement algorithms, referred to as “suspected blood indicators” (SBIs), the false posi-
tive rate is still high at over 70% [88]. Xiao et al. and Hassan et al. developed AI algorithms 
for the detection of bleeds with high sensitivity and specificity (99%) [23,89]. Aoki et al. 
also developed a novel AI-based blood detection algorithm with high sensitivity, specific-
ity, and accuracy (96.6%, 99.9%, and 99.8%, respectively), which were significantly higher 
than those of the SBI (76.9%, 99.8%, and 99.3%, respectively) [90]. They also showed the 
utility of an AI-based system for various small intestinal lesions (erosion, ulcer, angioec-
tasia, and protruding lesions) in their multiple clinical studies [36,91,92] (Figure 3C). 
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Hopefully, these novel AI algorithms will reduce the reading time for clinicians in the 
near future [93]. However, there are some limitations for developing AI-aided VCE, since 
small intestinal diseases are rather rare, and it is difficult to obtain sufficient large data 
sets for training. In addition, the VCE images may contain many artifacts (dark and red) 
and other objects (bile, food, air bubbles, etc.). There is a need for large collaborative da-
tabases to develop more precise systems.  

7. Colon Cancer and Polyps 
Colorectal cancer is the second most lethal cancer worldwide [43]. The total removal 

of colorectal adenomas by colonoscopy (clean colon) can reduce colorectal cancer deaths 
by 53% [94]. It is well known that approximately 20%–50% of colorectal polyps are over-
looked [95,96]. This incidence might be affected by the skill and fatigue of the endoscopist. 
Recent developments in deep learning algorithms have improved the detection sensitivity 
and specificity of AI-aided colonoscopy (in other words, computer-aided detection 
(CADe)). Using a deep learning algorithm, Misawa et al. first reported real-time detection 
for colon polyps, with a sensitivity of 90% and a specificity of 63.3% [97]. Urban et al. 
improved the specificity to 93% with a sensitivity of 93% using a wider variety of images 
(4088 unique polyps) for training [98]. In a more resent study, they demonstrated that AI-
aided colonoscopy trained by more images (56,668 images) detected polyps with a higher 
sensitivity (98%) and an improved specificity (93%) using a novel publicly accessible 
video database (entitled SUN-database: http://amed8k.sundatabase.org/ (accessed on 19 
September 2021)) they established [99]. The first randomized, controlled trial was con-
ducted by Wang et al., in which a total of 1058 patients (536 standard colonoscopies and 
522 computer-aided colonoscopies) were included [100]. The AI-aided colonoscopy sig-
nificantly increased the adenoma detection rate (53% in the AI group versus 31% in the 
control group). Recently, the same group conducted high-quality studies, including a 
double-blind randomized trial with an AI–colonoscopy system compared to a sham sys-
tem, and demonstrated that the adenoma detection rate was significantly higher in the AI-
colonoscopy group (34%, 165/484) than in the sham group (28%, 132/478) [101]. The ade-
noma miss rate was significantly lower in the AI–colonoscopy group compared to a rou-
tine colonoscopy (13.8% vs. 40.0%) [102]. They mentioned that the characteristic profiles 
of the polyps initially missed by the endoscopist but identified by the AI system were of 
small size, isochromatic, flat, and located behind the colon folds, as well as on the edge of 
the visual field.  

If optical colonoscopy is not possible, a colon capsule endoscopy or CT colonography 
may be performed. In a clinical trial, Deding et al. found that the sensitivity of colon cap-
sule endoscopy (estimated location by AI) following an incomplete optical colonoscopy 
was superior to CT colonoscopy, and the relative sensitivity of colon capsule endoscopy 
compared with CT colonography was 2.67 for polyps >5 mm and 1.91 for polyps >9 mm 
[103]. 

To reduce unnecessary endoscopic resections and decrease complications and medi-
cal costs, it is important to distinguish neoplasms from non-neoplasms. In the first pro-
spective clinical study in the field, Kominami et al. achieved high performance for a real-
time diagnosis by an AI-aided colonoscopy (in other words, computer-aided diagnosis 
(CADx)), with a sensitivity of 93.3% and a specificity of 93.3% [104]. Tamami et al. demon-
strated that a computer-aided NBI colonoscopy correctly diagnosed T1b stage cancer with 
a sensitivity of 83.9% and a specificity of 82.6%, which was better than a normal endoscopy 
[105]. Mori et al. successfully proved the utility of AI-aided endocytoscopy, which is an 
ultra-high magnification endoscopy that permits an in vivo assessment of cellular struc-
ture, in prospective clinical trials. In their studies, the AI-aided endocytoscopy had a sen-
sitivity of 92% and an accuracy of 89.2%, which was quite similar to expert pathologists 
[106,107]. In a recent multicenter study, Kudo et al. showed a much better performance 
(96.9% sensitivity, 100% specificity, and 98% accuracy) of AI endocytoscopy trained using 
69,142 endocytoscopic images, taken at 520× magnification, from patients with colorectal 
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polyps who underwent endoscopy at five academic centers [108]. These tremendous ef-
forts by endoscopists and engineers have resulted in a powerful basis for the development 
of AI-assisted devices, and several AI-aided endoscopic systems have been approved by 
the FDA and the EU (Table 1). Using AI-aided devices, endoscopists can begin an endo-
scopic exam immediately by connecting the endoscope to a terminal and monitor 
equipped with the software. Moreover, a prototype of a novel AI including a colonoscope, 
which has two lenses, a 160° to 240° angle lateral-backward-view lens and a standard 160°-
angle forward-view lens, was published with videos included [109]. 

Depth prediction for colon cancer is another issue in a colonoscopy diagnosis. Takeda 
et al. demonstrated that AI endocytoscopy correctly diagnosed invasive colorectal cancer 
with a sensitivity of 98.1% and a specificity of 100% [110]. Chen et al. used EUS with AI 
for predicting tumor deposits with a higher AUC than that obtained by magnetic reso-
nance imaging (MRI) [111]. Recently, Kudo et al. established an AI prediction system us-
ing patient’s data (age, sex, tumor size, morphology, lymphatic and vascular invasion, 
and histology), demonstrating that the AI system identified patients with lymph node 
metastases of T1 colon cancer better than the United States guidelines (AUC 0.83 vs. 0.73) 
[112]. They mentioned that these prediction models might be used to determine which 
patients require additional surgery after endoscopic resection of T1 colon cancer. 

8. Inflammatory Bowel Disease 
The incidence of inflammatory bowel disease (IBD), represented by Crohn’s disease 

(CD) and ulcerative colitis (UC), is increasing throughout the world, but its pathogenesis 
remains unclear [113–116]. Recent studies have indicated that IBD is a multifactorial im-
mune-mediated disease resulting from a complex interplay between host genetic, envi-
ronmental, and resident microbial factors [115,117–119]. To explore the pathogenesis, big 
data analysis by AI, such as pathological elucidation and biomarker identification, is on-
going and summarized in another review [120]. Using AI data analysis, Waljee et al. pre-
dicted remission in patients with moderate-to-severe CD with an AUC of 0.78 at week 8 
and an AUC of 0.76 at week 6 [121]. Wang et al. applied AI to predict medication non-
adherence in CD patients [122]. 

An endoscopic assessment of inflammation in IBD may vary among endoscopists 
depending on their level of experience. Several AI-aided UC scoring algorithms trained 
by unbiased UC imaging data that were linked to histological data demonstrated excellent 
performances in distinguishing endoscopic remission (Mayo 0–1) from moderate-to-se-
vere disease (Mayo 2–3) [123–125]. Even Mayo 1 level mucosa has very mild inflamma-
tion. Ozawa et al. focused on distinguishing Mayo 0 from 0–1 and showed a high level 
performance of AI-aided diagnosis with an AUC of 0.86 and 0.98 for Mayo 0 and 0–1, 
respectively [126]. In a more resent prospective study, Takenaka et al. trained an AI algo-
rithm with 40,758 images of colonoscopies and 6885 biopsy results from 2012 UC patients 
and showed that the system identified endoscopic remission with 90.1% accuracy and his-
tologic remission with 92.9% accuracy [127]. Another approach using endocytoscopy with 
AI was reported by Maeda et al. [128]. As indicated above, using capsule endoscopy, Ku-
mar et al. reported the first AI-aided diagnostic system for CD lesions with various levels 
of severity, which resulted in a high sensitivity of over 90% and a high specificity of over 
90% [86]. Charisis et al. reported an improved algorithm for capsule endoscopy to detect 
CD lesions with a sensitivity of 95.2%, a specificity of 92.4%, and an accuracy of 93.8% 
[129]. In a more recent study, Klang et al. employed a deep learning algorithm with more 
training images for detecting CD lesions by AI-aided capsule endoscopy and demon-
strated excellent performance with an AUC of 0.99 and an accuracy of 95.4%–96.7% [130]. 
CT and MRI images are necessary to determine the disease activity in IBD. Although it is 
challenging for AI to recognize the intestinal wall structure on CT and MRI, semi-auto-
mated AI-aided systems have been reported and summarized previously [131,132]. 
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UC-associated dysplasia and cancer are often difficult to detect. A recent case report 
suggested the usefulness of AI-based colonoscopy for the detection of dysplasia in pa-
tients with longstanding UC [133].  

9. Irritable Bowel Syndrome (IBS) 
The prevalence of IBS is estimated at 10%–20% worldwide [134]. A few AI-related 

studies for IBS have been published. Most patients with IBS identify certain foods as trig-
gers for their symptom flare-ups. There are two unique smartphone applications for iden-
tifying potential trigger foods. Using photos of food from the mobile applications, Chung 
et al. developed a personal informatics system, which allows patient–provider collabora-
tion and supports precise individual management [135]. Zia et al. designed an application 
using an AI algorithm based on regression analyses to identify possible relationships be-
tween foods and IBS symptoms. Their two-week study featured assessments of symptoms 
four times a day and at every meal using a 100-point graded sliding scale [136]. These AI-
aided mobile applications tether patients directly to clinicians by capturing frequent and 
continuous data from patients, and providing individual precision feedback from clini-
cians to patients. This direct interaction is an advantage of AI and will change health care 
strategies. 

In IBS, gut microbiota is likely linked to its symptoms and pathogenesis [137]. Fukui 
et al. established a unique AI prediction model for identifying IBS patients based on gut 
microbiota (sensitivity >80% and specificity >90%) [138]. 

10. Liver Diseases 
This section reviews AI-aided image analyses for diagnosing liver masses. In addi-

tion, many data analysis studies using AI algorithms have been conducted to predict pa-
tients’ outcomes and to discover biomarkers. 

10.1. Liver Masses 
The risk factors for hepatocellular carcinoma (HCC), such as obesity, type 2 diabetes, 

and nonalcoholic fatty liver disease, are replacing viral- and alcohol-related liver disease 
[139]. With an increase in metabolic disorders, liver cancer is steadily growing and is the 
third leading cause of cancer-related death [43,140,141].  

The detection and diagnosis of liver masses is performed by ultrasonography, CT, 
and MRI, and AI has been developed for hepatic mass identification. Yasaka et al. em-
ployed an AI-aided enhanced CT, which resulted in high performance (AUC = 0.92) in 
differentiating malignant liver masses (HCCs and other malignant masses) from benign 
tumors (hemangiomas) or cysts [142]. An AI-aided, multi-phasic MRI developed by 
Hamm et al. demonstrated higher performance than two radiologists for the detection of 
six common liver masses (HCC, cyst, hemangioma, focal nodular hyperplasia (FNH) in-
tra-hepatic cholangiocarcinoma, and metastatic tumor) with a sensitivity of 90% versus 
80%/85% and a specificity of 98% vs. 96%/96% [143]. In particular for HCC, the AI had a 
sensitivity of 90%, compared to 60%/70% from the radiologists. Furthermore, the AI pro-
cessing speed was extremely fast at 5.6 milliseconds. These results are promising, and the 
FDA recently approved a liver AI for liver lesion detection by AI-aided MRI and CT (Table 
1). It is difficult to develop AI-aided ultrasonography because of several technical issues, 
which include variability in the data formats and investigator skill level, and, as such, the 
quality of an ultrasonographic image is highly operator dependent. Although the condi-
tions of examination directly affect the quality of ultrasonographic images, several posi-
tive results have been reported and summarized [144]. Schmauch et al. showed that AI-
aided ultrasonography detected and diagnosed liver masses (HCC, hemangioma, metas-
tasis, cysts, and FNH) with high performances (AUC 0.935 and 0.916, respectively) [37]  
(Figure 3D). Enhanced ultrasonography [145] for AI-aided EUS also demonstrated the ca-
pability of an EUS-CNN model to autonomously identify liver masses and to accurately 
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classify them as either malignant or benign lesions [146]. AI development in the field of 
ultrasonography has challenges, including a high dependence on operator experience for 
acquiring quality imaging data, numerous different equipment vendors and models, mul-
tiple image quality parameters, and a high diversity of images and hurdles in database 
construction. In particular, ultrasound waves require high-speed processing. For histo-
pathology, Sun et al. reported the first paper showing a method to classify liver cancer 
histopathological images using AI [147].  

To screen high-risk patients for the development of HCC from patients with cirrhosis, 
Singal et al. used an AI algorithm and reported good performance [148]. Another im-
portant clinical issue for HCC patient management is to identify patients at high risk for 
post-treatment recurrence. To predict post-operative recurrence, Feng et al. used an AI-
aided contrast-enhanced MRI and reported an AUC of 0.83, a sensitivity of 90%, a speci-
ficity of 75%, and an accuracy rate of 84% compared to radiologists with an AUC of 0.47–
0.57, a sensitivity of 19.3%–45.2%, a specificity of 67.3%–83.7%, and an accuracy rate of 
58.8% [149]. Abajian et al. also showed the utility of AI combined with MRI and patient 
data [150]. For a similar purpose, Saillard et al. used histopathology images and high-
lighted the importance of pathologist–AI interactions in the construction of deep-learning 
algorithms, which benefit from expert knowledge [151]. It was superior to the existing 
prognostic factors. Factors reflecting a poor prognosis include the presence of vascular 
space in the tumor and a cord-like shape. AI ultrasonography can also be used for the 
prediction of response to transcatheter arterial chemoembolization (TACE) and the pre-
diction of post-radiofrequency ablation (RFA) and post-operation survival [152,153]. 

10.2. Nonalcoholic Fatty Liver Disease (NAFLD) 
With the increase in systemic metabolic diseases (obesity, diabetes, hyperlipidemia, 

etc.), the incidence of NAFLD is also increasing worldwide [154]. Since NAFLD-derived 
HCC is increasing, the early detection of NAFLD is critical to avoid future carcinogenesis. 
Recently, deep learning algorithms, such as CNNs, have improved the detection of fatty 
liver disease by ultrasonography [155,156]. Fibrosis is an advanced stage of liver steatosis 
and the most important risk factor for carcinogenesis. The gold standard for the diagnosis 
of fibrosis is a liver biopsy, which is invasive and costly [157,158]. The systematic review 
by Decharatanachart et al. suggested that AI-aided systems (ultrasonography, elas-
tography, CT, and MRI) have promising potential for the diagnosis of liver steatosis and 
fibrosis with an overall sensitivity of 97% and a specificity of 91% [159]. Elastography is 
currently the most commonly used modality for staging liver fibrosis [160], and two pa-
pers have demonstrated the utility of AI-aided elastography to detect liver fibrosis 
[161,162]. Gatos et al. designed an AI-aided shear-wave elastography based on a support 
vector machine model to discriminate chronic liver disease patients (fibrosis) from healthy 
individuals with a sensitivity of 93.5%, a specificity of 81.2%, an accuracy of 87.3%, and 
an AUC of 0.87 [162]. Wang et al. applied deep learning to shear wave elastography and 
compared the AI elastography to a liver biopsy [161]. The AI elastography similarly diag-
nosed cirrhosis (AUC 0.97) and advanced fibrosis (AUC 0.98).  

Other AI approaches using clinical and laboratory variables routinely measured in 
clinical practice have been developed [163]. Using serial laboratory data over a person’s 
timeline, AI analysis can provide a better understanding of a multitude of mechanisms 
and relationship of risk factors and symptoms. Furthermore, the risk assessment of 
NAFLD by AI algorithms using serial laboratory variables over a person’s timeline should 
improve a physician’s management and a patient’s motivation. There are many algo-
rithms challenged in medical AI fields [164], and choosing the best algorithm is an im-
portant issue for data analysis by AI. Ma et al. used the Bayesian network model and 
showed better performance in diagnosing NAFLD based on clinical data than that of lo-
gistic regression [165]. Sowa et al. suggested that random forest and decision tree are bet-
ter than a support vector machine for the separation of NAFLD from alcoholic liver dis-
ease [166].  
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10.3. Viral Hepatitis 
Viral hepatitis (B and C) is still recognized as a major cause of liver cirrhosis and 

carcinogenesis worldwide, particularly in developing countries. Several AI-based models 
have been developed to predict the risk of hepatitis-related cirrhosis [167–171]. More re-
cently, a unique prediction model using gut microbiome data was published [172]. Oh et 
al. used a random forest-based AI algorithm with differential abundance analysis to pro-
file the gut microbiota and metabolites and detect cirrhosis with an AUC of 0.91.  

10.4. Primary Sclerosing Cholangitis (PSC) 
PSC lacks effective medical treatments and occasionally requires a liver transplant 

due to advanced fibrosis [173]. Moreover, PSC is a premalignant condition and is associ-
ated with bile duct cancer at an incidence of 10%–30% [173]. Eaton et al. developed an AI-
based prediction model, called the Primary Sclerosing Cholangitis Risk Estimate Tool 
(PREsTo), and demonstrated that the model accurately predicts liver failure in PSC pa-
tients, which exceeded the performance of other established, noninvasive prognostic scor-
ing systems [174].  

10.5. Liver Transplantation 
Liver transplantation offers an excellent outcome for several end-stage liver disor-

ders. However, challenges remain, such as insufficient donors, high mortality on the wait-
ing list, and graft failures. Regarding the discrepancy between the number of donors and 
the number of recipients, the appropriate organ allocation should be performed to avoid 
human bias. The current allocations are based on widely used scoring systems, such as 
the model for end-stage liver disease (MELD) score, the Delta-MELD score, and the bal-
ance-of-risk score, and may yield conflicting results [175,176]. Some AI-based, donor–re-
cipient matching models have been developed [177,178]. Graft failure is the most common 
problem after liver transplantation. AI-based algorithms developed by Lau et al. using 
donor, transplant and recipient characteristics predicted graft failure with a high AUC of 
0.818 [179]. To identify novel factors associated with death after transplantation, AI has 
been applied [180,181]. Using a machine learning approach, Bhat et al. found that new-
onset or preexisting diabetes was associated with high mortality [180].  

11. Pancreatic Disease 
This section reviews AI-aided image and data analyses for the diagnosis of pancreatic 

disease.  

11.1. Pancreatic Cancer 
Pancreatic cancer is the seventh most lethal cancer worldwide [43,182]. Tumor size is 

the most prognostic factor in pancreatic cancer [183]. The five-year survival of patients 
with lesions smaller than 10 mm (TS1a) is more than 80%, while the five-year survival of 
patients with larger lesions (>10 mm) is less than 50% [184]. The challenges for pancreatic 
ductal cancer include a lack of definition in the high-risk group and difficulty in early 
detection by imaging. Pereira et al. nicely summarized the literature regarding early de-
tection by AI technology [185]. Although abdominal CT is commonly used for screening 
pancreatic cancer, the detection sensitivity is not high for small lesions [186,187]. To re-
solve this issue, Liu et al. first trained an AI algorithm with 436 CT images, including 300 
normal cases and 136 pancreatic cancer cases [188]. The AI system achieved a sensitivity 
of 80.2% with a specificity of 90.2%, which may be improved by a larger number of train-
ing images. Alternatively, EUS is a more powerful modality to detect small lesions in the 
pancreas [187,189]. Tonozuka et al. published a pilot study using video to detect pancre-
atic ductal cancer by AI-based EUS [190]. The system was trained with 920 images of can-
cers as well as control images from patients with chronic pancreatitis and those with a 
normal pancreas and, subsequently, validated with an additional 470 test images. The 
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system diagnosed cancers successfully with an AUC of 0.94. To differentiate between can-
cer and non-cancer (chronic pancreatitis and a normal pancreas), several algorithms have 
been applied since the first report using a simple conventional algorithm by Norton et al., 
and three recent reports have used deep learning algorithms [191].  

The identification of high-risk individuals is another important factor for the early 
detection of pancreatic cancer [185]. Using AI methodologies and the National Health In-
surance Research Database of Taiwan (total 1,358,634 patients), Hsieh et al. developed the 
first prediction models for pancreatic cancer in patients with type 2 diabetes [192]. They 
demonstrated that a logistic regression algorithm predicted pancreatic cancer more accu-
rately (AUC of 0.727) than an artificial neural network algorithm, although several re-
searchers have reported that artificial neural networks are suitable to predict some dis-
eases [193]. Further investigations are necessary to identify the most suitable model. 

11.2. Intraductal Papillary Mucinous Neoplasm (IPMN) 
Pancreatic cystic lesions, particularly IPMN, are the precursors of pancreatic cancer 

[194]. Kuwahara et al. successfully established an AI-aided EUS using deep learning to 
distinguish malignant IPMNs from benign ones [195]. The AI-aided EUS could diagnose 
malignant probability with a high sensitivity of 95.7% and a high accuracy of 94.0%, which 
was much greater than that of experts’ diagnoses (56.0%). AI-aided diagnosis is under 
development not only for IPMNs but also for other cystic lesions of the pancreas, such as 
serous cystic neoplasms, mucinous cystic neoplasms, solid pseudopapillary neoplasms, 
and cystic pancreatic neuroendocrine neoplasms [196]. 

11.3. Autoimmune Pancreatitis (AIP) 
Mass-forming AIP may be misdiagnosed as pancreatic cancer and unnecessary sur-

gical resections can occur. Marya et al. demonstrated that an AI-aided EUS accurately dif-
ferentiated AIP from pancreatic ductal adenocarcinoma and benign pancreatic conditions, 
thereby permitting an earlier and more accurate diagnosis [197]. The use of this model 
offers the potential for more timely and appropriate patient care and an improved out-
come. 

12. Future Needs and Conclusions 
AI technologies in the medical field hold tremendous promise, although systematic 

reviews have not provided sufficient evidence that AI outperforms physicians [198]. Sev-
eral AI-aided devices are commercially available (Table 1), and for future use, multiple 
studies are on-going in promising areas, such as the identification of anatomical structures 
and lesions during endoscopic ultrasound, robotic endoscopic surgery, and mobile appli-
cation. However, there are potential pitfalls, including technical and legal issues [199]. To 
improve the accuracy of AI diagnosis, more data, including imaging and clinical data, are 
required to train AI systems. The training data should be collected not only from patients 
with disease but also from healthy individuals, because larger databases will increase the 
specificity of the AI system. Particularly for rare diseases, international multicenter pro-
jects and open-source libraries, such as ImageNet and cloud net systems [135,136,200], are 
ideal to provide sufficient training data. However, another issue involves ‘data format-
ting’ such that different institutions/software may have different data formats. Standard-
ization is critical for future AI developments. To resolve these issues, clinicians need to 
better understand AI technologies through reading AI-related articles and through col-
laboration with AI engineers. Even with a large amount of training data, the performance 
of a particular AI system changes with each training step (annotation, selection of algo-
rithm, selection of data set, etc.), and the addition of inappropriate data will adversely 
affect performance. Moreover, even in situations where sufficient high-quality training 
data are used, “overfitting” may occur. To design precise AI systems, we must validate 
the systems in real-world situations [104,201,202].  
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In conclusion, there is little doubt that AI technology will benefit almost all medical 
personnel, ranging from specialty physicians to paramedics, in the future [7]. Further-
more, patients should benefit from AI technology directly via mobile applications 
[135,136]. Physicians should collaborate with the different stakeholders within the AI eco-
system to provide ethical, practical, user-friendly, and cost-effective solutions that reduce 
the gap between research settings and applications in clinical practice. Collaborations 
with regulators, patient advocates, AI companies, technology giants, and venture capital-
ists will help move the field forward. 
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